EM 1110-3-136

DEPARTMENT OF THE ARMY US Army Corps of Engineers Washington, DC 20314

Engineer Manual No. 1110-3-136

9 April 1984

Engineering and Design DRAINAGE AND EROSION CONTROL Mobilization Construction PART ONE GENERAL

•		<u>Paragraph</u>	Page
CHAPTER 1.	PURPOSE AND SCOPE		
	Purpose	1-1 1-2	1-1 1-1
	Hydrologic cycle	1-3	1-1
CHAPTER 2.	DESIGN CONSIDERATIONS		
	Design	2-1	2-1
	Drainage outfall considerations Initial and deferred design and	2-2	2-1
	construction	2-3	2-1
	PART TWO SUBSURFACE DRAINAGE		
CHAPTER 3.	SUBSURFACE DRAINAGE REQUIREMENTS		
	General	. 3-1	3-1
	subsurface drainage requirements Criteria for determining the	. 3-2	3-1
	need for subsurface drainage	. 3-3	3-2
CHAPTER 4.	PRINCIPLES OF SOIL DRAINAGE		
	Flow of water through soils		4-1
	Drainage of water from soils	. 4-2	4-4
CHAPTER 5.	BACKFILL FOR SUBSURFACE DRAINS		
	General	. 5-1	5-1
	materials	. 5-2	5-1
	Construction of filter material	. 5-3	5-3

			Paragraph	Page
CHAPTER	6.	SUBSURFACE DRAINAGE PROCEDURES		
		Purpose	6-1	6-1
		Methods		6-1
		drainage	6-3	6-1
		Subgrade drainage	6-4	6-3
		Intercepting drainage		6-6
		Type of pipe	6-6	6-6
		Manholes and observation basins		6-9
		Pipe sizes and slopes	6-8	6-9
		Filter material		6-10
		Depth of cover over drains	6-10	6-10
		PART THREE		
		SURFACE DRAINAGE		
CHAPTER	7.	SURFACE DRAINAGE REQUIREMENTS		
		General	7-1	7-1
		Design storm		7-1
		Infiltration		7-4
		Rate of supply	7-4	7-4
		Runoff	7-5	7-5
		Investigations to determine		
		surface drainage requirements	7-6	7-9
CHAPTER	8.	DRAINAGE PIPE		
		General	8-1	8-1
		Selection of type of pipe		8-1
		Selection of n values	8-3	8-1
		coated pipe	8-4	8-1
		Minimum cover		8-3
		Frost condition considerations		8-6
		Infiltration of fine soils through drainage pipe joints	8-7	8-15
CHAPTER	9.	INLETS AND BOX DRAINS		·
		General	9-1	9-1
		Inlets versus catch basins		9-1
		Design features		9-1
		Box drains		9-6
		Settlement of inlets and drains		9-6
		Described of Intere and digination	, ,	<i>,</i> 0

			Paragraph	Page
CHAPTER	10.	OPEN CHANNELS		
		General	. 10-2	10-1 10-1 10-3
CHAPTER 11.	11.	CULVERTS		
		General		11-1 11-1
		size Instructions for use of	. 11-3	11-12
		inlet-control nomographs Instructions for use of	. 11-4	11-17
		outlet-control nomographs Culvert capacity charts		11-18 11-19
CHAPTER	12.	CONSTRUCTION DRAINAGE		
		General Planning Protective measures	. 12-2	12-1 12-1 12-1
		PART FOUR EROSION CONTROL		
CHAPTER	13.	EROSION CONTROL REQUIREMENTS		
		General Design criteria Estimating erosion	. 13-2	13-1 13-1 13-1
CHAPTER	14.	RIPRAP		
		Riprap protection	. 14-2 . 14-3	14-1 14-1 14-1 14-4
CHAPTER	15.	VEGETATION		
		Planting zones Turf development Terraces	. 15-2	15-1 15-1 15-3

PART FIVE DEFERRED DESIGN AND CONSTRUCTION

			Paragraph	<u>Page</u>
CHAPTER	16.	REQUIREMENTS FOR DEFERRED STRUCTUR	ES	•
		General		l 6-1 l 6-1
CHAPTER	17.	HEADWALLS		
		General Entrances Types of headwalls Headwall construction Outlets and endwalls Structural stability Sloughing Apron	. 17-2 . 17-3 . 17-4 . 17-5 . 17-6 . 17-7	17-1 17-1 17-1 17-2 17-2 17-2 17-3
CHAPTER	18.	DROP STRUCTURES AND CHECK DAMS		
		Description and purpose Design Typical design problem Solution - design of notch Alternate design	. 18-2 . 18-3 . 18-4	18-1 18-1 18-3 18-3 18-4
CHAPTER	19.	CHUTES		
		General Design problem Solution	. 19-2	19-1 19-4 19-4
CHAPTER	20.	STILLING BASINS		
		General Stilling well USBR Type VI basin SAF basin Design summary Comparison of various stilling basins	. 20-2 . 20-3 . 20-4 . 20-5	20-1 20-1 20-3 20-3 20-8
		Design problem	. 20-7	20-10
OII A DOUG C	21	Solution	. 20-8	20-12
CHAPTER	21.	GUTTERS		
		General	. 21-1	21-1

		Paragraph	Page
	Discharge capacity Design charts		21-1 21-1
APPENDIX A	SUPPORTING INFORMATION FOR CULVERT	DESIGN	A-1
APPENDIX B	REFERENCES		B-1
	LIST OF FIGURES		
Figure 1-1.	Occurrence, source, and movement of	ground wa	ter.
4-1.	Darcy's Law for flow-through soils.		
4-2.	Permeability chart.		
4-3.	Design of base- and subbase-course	drainage.	
5-1.	Design example for filter material.		
6-1.	Typical details of base- and subbas installations.		rain
6-2.	Typical subgrade drainage details.		
6-3.	Ground water conditions after insta subgrade drainage.	llation of	: '
6-4.	Thickness of ground water layer in shape factor.	relation t	0
6-5.	Typical installation of interceptin	g drains.	
6-6.	Drainage nomograph.		
7-1.	Design storm index - 1 hour rainfal frequency data for continental Un		
	and Alaska.		
7-2.	Standard rainfall intensity duration standard supply curves.		r
7-3.	Modification in L required to compedifferences in n and S.	ensate for	
7-4.	Rate of overland flow.		
8-1.	Three main classes of conduits.		
8-2.	,		
8-3.	Load factors and class of bedding.		
8-4.	Bedding for positive projecting con		
8-5.	Installation conditions which influunderground conduits.		
8-6.	Relationships between air freezing penetration into granular, nonfro beneath pavements kept free of softeezing indexes below 800.	st-suscept	ible soil
8-7.	Relationships between air freezing penetration into granular, nonfro beneath pavements kept free of sr	st-suscept	ible soil
8-8.	Maximum depth of frost penetration	•	
9-1.	Determination of typical inlet grat		arge curve
9-2.	Examples of typical inlet grates.		

- 9-3. Examples of inlet design.
- 9-4. Typical inlet box drain designs for airfield and heliport storm drainage systems.
- 10-1. Retardance coefficients for flow in turfed channels.
- 10-2. Airfield runway, taxiway, apron, and overrun grades.
- 10-3. Froude number and depth of flow required for incipient transport of cohesionless material.
- 10-4. Depth of flow and unit discharge for incipient transport of cohesionless material.
- 10-5. Flow characteristics of trapezoidal channels with 1-on-3 side slopes.
- 10-6. Froude number and depth of flow for incipient failure of riprap lined channel.
- 10-7. Depth of flow and unit discharge for incipient failure of riprap lined channel.
- 10-8. Flow characteristics of rectangular channels.
- 10-9. Discharge characteristics of various channels.
- 11-1. Inlet and outlet control.
- 11-2. Headwater depth for smooth pipe culverts with inlet control.
- 11-3. Headwater depth for corrugated pipe culverts with inlet control.
- 11-4. Headwater depth for box culverts with inlet control.
- 11-5. Head for smooth pipe culverts flowing full n = 0.012.
- 11-6. Head for corrugated pipe culverts flowing full n = 0.024.
- 11-7. Head for concrete box culverts flowing full n = 0.012.
- 11-8. Circular pipe critical depth.
- 11-9. Critical depth rectangular section.
- 11-10. Culvert capacity circular smooth pipe groove-edge entrance 18" to 66".
- 11-11. Culvert capacity standard circular corrugated pipe projecting entrance 18" to 36".
- 11-12. Culvert capacity standard circular corrugated pipe projecting entrance 36" to 66".
- 13-1. Square culvert-Froude number.
- 13-2. Predicted scour depth versus observed scour depth.
- 13-3. Predicted scour width versus observed scour width.
- 13-4. Predicted scour length versus observed scour length.
- 13-5. Predicted scour volume versus observed scour volume.
- 13-6. Dimensionless scour hole geometry for minimum tailwater.
- 13-7. Dimensionless scour hole geometry for maximum tailwater.
- 14-1. Recommended riprap sizes, gully scour.
- 14-2. Recommended riprap sizes, scour hole.
- 14-3. Recommended gradation.
- 15-1. Planting zones.
- 17-1. Maximum permissible discharge for various lengths of flared outlet transition and tailwaters.

- 17-2. Length of flared outlet transition relative to discharge, tailwater, and conduit size.
- 17-3. Relative effects of recessed apron and end sill on permissible discharge.
- 18-1. Design of drop structures for open channels.
- 18-2. Details and design chart for typical drop structure.
- 19-1. Details of typical drainage chute.
- 19-2. Design charts for concrete drainage chute.
- 20-1. Stilling well.
- 20-2. Storm drain diameter versus discharge stilling well.
- 20-3. USBR Type VI basin.
- 20-4. Storm drain diameter versus discharge USBR Type VI basin.
- 20-5. Proportions of SAF stilling basin.
- 20-6. Storm drain diameter versus discharge SAF stilling basin.
- 20-7. Design chart for SAF stilling basin.
- 21-1. Drainage gutters for runways and aprons.
- A-1. Headwater depth for oval smooth pipe culverts, long axis vertical with inlet control.
- A-2. Headwater depth for oval smooth pipe culverts, long axis horizontal with inlet control.
- A-3. Headwater depth for structural plate and corrugated pipe-arch culverts with inlet control.
- A-4. Headwater depth for corrugated pipe culverts with tapered inlet, inlet control.
- A-5. Headwater depth for circular pipe culverts with beveled ring, inlet control.
- A-6. Head for oval smooth pipe culverts long axis horizontal or vertical flowing full n = 0.012.
- A-7. Head for structural plate pipe culverts flowing full n = 0.0328 to 0.0302.
- A-8. Head for corrugated pipe-arch culvert flowing full n = 0.024.
- A-9. Head for field-bolted structural plate pipe-arch culverts 18-inch corner radius flowing full n = 0.0327 to 0.0306.
- A-10. Oval smooth pipe long axis horizontal critical depth.
- A-11. Oval smooth pipe long axis vertical critical depth.
- A-12. Corrugated pipe-arch critical depth.
- A-13. Structural plate pipe-arch critical depth.
- A-14. Culvert capacity circular smooth pipe groove-edged entrance 60" to 180".
- A-15. Culvert capacity standard circular corrugated pipe headwall entrance 18" to 36".
- A-16. Culvert capacity standard circular corrugated pipe headwall entrance 36" to 66".
- A-17. Culvert capacity standard corrugated pipe-arch projecting entrance 25" by 16" to 43" by 27".

- A-18. Culvert capacity standard corrugated pipe-arch projecting entrance 50" by 31" to 72" by 44".
- A-19. Culvert capacity standard corrugated pipe-arch headwall entrance 25" by 16" to 43" by 27".
- A-20. Culvert capacity standard corrugated pipe-arch headwall entrance 50" by 31" to 72" by 44".
- A-21. Culvert capacity square concrete box 90 degrees and 15 degrees wingwall flare 1.5' by 1.5' to 7' by 7'.
- A-22. Culvert capacity square concrete box 30 degrees and 75 degrees wingwall flare 1.5' by 1.5' to 7' by 7'.
- A-23. Culvert capacity rectangular concrete box 90 degrees and 15 degrees wingwall flare 1.5', 2.0', and 2.5' heights.
- A-24. Culvert capacity rectangular concrete box 90 degrees and 15 degrees wingwall flare 3' and 4' heights.
- A-25. Culvert capacity rectangular concrete box 90 degrees and 15 degrees wingwall flare 5' and 6' heights.
- A-26. Culvert capacity rectangular concrete box 30 degrees and 75 degrees wingwall flare 1.5', 2.0', and 2.5' heights.
- A-27. Culvert capacity rectangular concrete box 30 degrees and 75 degrees wingwall flare 3' and 4' heights.
- A-28. Culvert capacity rectangular concrete box 30 degrees and 75 degrees wingwall flare 5' and 6' heights.

LIST OF TABLES

- Table 7-1. Infiltration rate for generalized soil classifications (uncompacted).
 - 7-2. Coefficients of roughness for overland flow.
 - 8-1. Roughness coefficients for various pipes.
 - 8-2. Minimum pipe cover requirements for airfields and heliports.
 - 8-3. Minimum pipe cover requirements for roads and railroads.
 - 8-4. Minimum required depth of cover protection of storm drains and culverts in seasonal frost areas.
 - 8-5. Estimated frost penetration for selected locations.
 - 10-1. Suggested coefficients of roughness and maximum permissible mean velocities for open channels.
 - 11-1. Entrance loss coefficients outlet control, full or partly full entrance head loss $W_e = K_e \ V^2/2g$.
 - 11-2. Manning's n for natural stream channels.
 - 17-1. Limiting values of $Q/D_0^{5/2}$.

20-1. Maximum discharge recommended for various types and sizes of energy dissipators.